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The motion of the free surface of a viscous droplet is investigated. By using 
lubrication theory a model is developed for the motion of the free surface which 
includes both the effect of slip and the dependence of the contact angle on the slip 
velocity. We solve the resulting nonlinear partial differential equation in several 
ways. First we investigate the initial motion of the drop a t  a non-equilibrium contact 
angle using the method of matched asymptotics. Then we develop a pseudo-spectral 
method to  numerically solve the full nonlinear system. The dependence of the 
spreading rate of the drop on the various physical parameters and for different slip 
models is determined. 

1. Introduction 
The motion of a drop on a solid surface is a moving-boundary problem in fluid 

mechanics of considerable interest and difficulty. Besides the obvious difficulties 
associated with any moving interface, the behaviour of the fluid in the neighbourhood 
of the contact line (three-phase line) presents an added complication. The contact 
line is the curve formed when an interface between two immiscible fluids (e.g. air and 
water) intersects a solid. The difficulty is as much a modelling problem as an 
analytical one associated with the solution of the equations of motion. First the no- 
slip condition, which is normally used at the boundary between a solid and a liquid, 
introduces a non-integrable force singularity a t  the contact line. Therefore this 
condition has to  be modified. Second, the behaviour of the contact angle has been 
found experimentally to be a complicated function of the contact-line speed. 
Therefore this functional relationship has to  be somehow included in any analysis of 
the moving-boundary problem. Both of these points have been addressed by several 
authors (see e.g. Dussan V. 1979 ; Davis 1983; and de Gennes 1985 for a review). Here 
we shall carefully study a lubrication model of droplet motion which overcomes the 
above difficulties. Our aim is to show explicitly how the different physical parameters 
and different models of the slip behaviour at the contact line affect the spreading rate 
of the droplet. The solution of the model will be determined analytically in several 
limiting cases. Also we solve the model equations numerically by using a pseudo- 
spectral method. 

Many experiments have been done to determine the relationship between the 
contact angle and the contact-line speed (e.g. Hoffman 1975; Johnson, Dettre & 
Brandeth 1977; Dussan V. 1979; and Chen 1988). These show that the contact-line 
speed, Us, is a monotonic increasing function of the contact angle, 0. The 
experiments indicate that a range of angles [OR, O,], exists for which Us is zero, a 
phenomenon known as contact-angle hysteresis. This implies that there will be a very 
complicated nonlinear motion of the droplet. I n  particular any model of the droplet 
motion should reflect this complicated behaviour of the contact line. This is usually 
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done by giving a boundary condition at  the contact line which relates the contact 
angle to the slip velocity of the contact line. Because of the difficulty in solving such 
a boundary-value problem several analytical attempts to solve for the interface 
motion of droplet (Greenspan 1978; Davis 1980) have used a linear relation between 
0 and Us. This greatly simplifies the analysis and allows analytical solutions in 
several limiting cases. These calculations give reasonable results if we assume that 
0, z 0,. Recently Young & Davis (1987) have allowed for contact-angle hysteresis 
in their study of a plate oscillating across a liquid interface. By considering the low- 
capillary-number limit they were able to reduce the problem to the solution of a 
second-order ordinary differential equation which included the contact-angle 
hysteresis. Also recently the non-isothermal spreading of liquid drops with a contact 
line has been considered by Ehrhard & Davis (1990). Their analysis was for small 
capillary numbers but allowed different contact angle us. slip velocity relationships. 
Here we shall consider linear, piecewise quadratic and cubic contact angle us. slip 
velocity relationships. 

Although the no-slip condition is the accepted boundary condition between a fluid 
and a solid, it can lead to  complications in systems with moving contact lines. In  
analysing the fluid motion near a moving contact line, several authors (Huh & 
Scriven 1971 ; and Dussan V. & Davis 1974) have shown that the application of the 
no-slip condition at a moving contact line gives rise to a non-integrable force 
singularity. The standard method of alleviating this problem is to allow for slipping 
of the fluid near the contact line (Dussan V. & Davis 1974; Huh & Mason 1977; 
Hocking 1977 ; and Davis 1983). In this paper a Navier slip condition of the form 

u = h ( h ) n . S . t  (1 .1)  

is used where u is the tangential component of velocity along the wall, n and t are 
the unit normal and tangential vectors on the fluid solid interface, and taking ,u to 
be the fluid viscosity, ,us is the viscous stress tensor. The slip length h(h) is allowed 
to be a function of the drop height h, and we shall consider the three cases: 

(1.2a-c) 

where A,, A, and A, are non-zero constants. Much of the work will use the slip model 
with A(h) = AJh. 

Although we do not give an explicit derivation of our slip model ( l . l ) ,  we note that 
recent analytical and numerical work does imply that such models are reasonable. 
For example, Jansons (1986) developed a model of a rough surface and was able to  
make theoretical predictions of the slip length. Also, recently Koplik, Banavar & 
Willemsen (1989), using a molecular-dynamics simulation of a low-Reynolds-number 
flow in a channel, have shown that the no-slip condition appears to break down near 
the contact line. We note that there has been a considerable amount of work which 
modifies the Navier-Stokes equations in the neighbourhood of the contact line by 
allowing for additional physics there (see e.g. the review article by de Gennes 1985). 
In  terms of this work we can view the boundary condition (1.1) plus our slip velocity 
us. contact angle relationship as effective boundary conditions which allow the use of 
the Navier-Stokes equations in the whole computational domain. For us the 
functional form of h will be given by (1.2) but in principle it should be determined 
from the behaviour of the contact line with the additional physics. This could result, 
say, from a matched asymptotic analysis. 

Here we shall use a lubrication model of the droplet. This model was developed by 
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Greenspan (1978) and has been used by several authors, see e.g. Greenspan & McCay 
(1981), Hocking (1981, 1983) and Rosenblat & Davis (1985). By assuming that the 
height of the droplet is much smaller than its radius Greenspan derived a first order 
in time, fourth order in space nonlinear partial differential equation for the motion 
of the free surface of an axisymmetric droplet. We should note that an alternative 
approach has been taken by Hocking & Rivers (1982) in which they avoid the 
lubrication approximation with its small contact angle requirement by considering 
droplets spreading a t  small capillary number with conditions of constant slip and 
constant contact angle. 

In this paper we shall determine solutions of the lubrication equation for different 
slip models and contact angle versus velocity relationships. Also we wish to 
determine the spreading rate as a function of the physical parameters (Bond number, 
capillary number, etc.) in the problem. We note that there has been some previous 
work in this direction. For example Dussan V. (1976) did an analytical study of the 
steady motion of a droplet with different A(h) in the limit of small capillary and 
Reynolds number plus small deviation of the contact angle from its steady value. She 
found that the characteristic of the slip boundary condition which most affects the 
overell flow field is the magnitude of the slip length. Here we shall consider the 
initial-value problem for the motion of the drop. Although there have been some 
solutions in the literature (Hocking 1981, 1983) for the motion of droplets, the initial- 
value problem with various slip models and slip velocity-contact angle relationships 
has not been considered before. Since there is no one accepted slip model, it is 
important to determine how different models affect the droplet motion. Also, since 
several slip velocity-contact angle relationships have been used in the literature, it 
is important to understand their effect on the droplet motion. Our aim is to address 
these points here. We should note that Hocking (1983), using the lubrication model, 
determined the motion of a droplet at small capillary number with a constant-slip 
model ( 1 . 2 ~ )  and using a fixed contact angle. The small-capillary-number assumption 
gives a quasi-steady motion and allowed him to solve the problem using a matched 
asymptotic analysis. 

This paper will be primarily concerned with solving the lubrication model 
numerically. This will be done by using a pseudo-spectral method. We shall use a 
Chebychev collocation method which will give very accurate information near the 
contact line. Much of the previous numerical work on this model has involved 
expansions in terms of powers of a radial variable measured from the centre of the 
drop (Greenspan & McCay 1981; Rosenblat & Davis 1985). For small capillary 
numbers such expansions can be expected to be good since the result at leading order 
in capillary number is a quadratic in terms of the radial variable. Numerical results 
at larger values of the capillary number and for very small slip lengths using these 
techniques are questionable because of the lack of resolution near the contact line. 
Another approach is due to Hocking (1981) who used a finite-difference method along 
with a clever spatial stretching near the contact line to study the motion of a two- 
dimensional drop. Few results were presented and only one model of the contact line 
was studied. 

In order to understand the initial-value problem in detail, a short-time 
linearization about the initial conditions will be done. This analysis will be applied 
to different models for the slip and contact-line behaviour to examine their effects. 
We shall consider combinations of the two slip conditions, A = A, constant and 
A(h) = A, h-', with two slip velocity-contact angle relations, linear and 8 = 8,. One 
of these cases, 0 = 8, and A = A,, has been previously studied by Hocking (1981). 

3 FLM 223 
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In the next section the problem formulation, slip condition, and velocity-angle 
relations used will be discussed. The third-section is concerned with the small-time 
linearizations. In $4 we shall present numerical solutions of the lubrication model 
and determine the effect of varying the physical parameters on the rate of spreading. 
The parameters considered are slip length, capillary number, drop volume, Bond 
number, and initial contact angle. Also, additional comparisons of the spreading 
rates are made for a linear, piecewise quadratic and cubic velocity-angle relations as 
well as comparisons for singular and non-singular slip models. 

2. Problem formulation 
Consider an axisymmetric drop of an incompressible viscous liquid on a flat 

surface. Let r be the radial variable measured from the centre of the drop, z the 
vertical variable measured from the solid surface, h(r, t )  the surface of the drop, and 
8 the (contact) angle that the edge of the drop makes with the solid surface (see 
figure 1). Denoting the radial and vertical components of velocity as u and w 
respectively, the equations of motion are : conservation of mass 

l a  a 
r ar a2 
--(ru)+-w = 0;  

conservation of momentum 

and 

Here p is the pressure, p the fluid density, and g the acceleration due to gravity. 
Along the solid surface z = 0 the boundary conditions are 

w = 0, 
and the Navier slip condition (1.1) 

u - A ( h ) k + g ]  = 0. 

The boundary conditions along the drop’s surface z = h(r , t )  are the kinematic 
condition 

ah ah 
-+u--w = 0, 
at ar 

the continuity of tangential stress 

and the jump in normal stress 

2 a u  ah au aw 
p = p , - - a - -  r ar a {  r- E[ I +  (9’13 - +2y [ 1 +  (EJ-l[(y - ar ---(-+4+3 ar ar az 
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FIQURE 1. Drop profile with contact angle 8. 

Here r~ is the surface tension and p ,  is the ambient pressure above the droplet. 

slip velocity Us and the contact angle 8 is formally written as 
Boundary conditions are still needed at  the contact line. The relation between the 

us =f(@). ( 2 . 9 ~ )  

Since the slip velocity can be expressed in terms of the drop radius R(t) as 

dR 
dt 

us = - 

we can combine (2.9a, b)  to give 
dR 
dt 
- = f ( O ) .  

We shall use the linear, piecewise quadratic and cubic relations 

dR 
-= dt K 1 ( @ - @ , ) ,  

(2.9b) 

(2.10) 

( 2 . 1 1 ~ )  

- = K 3 ( 8 - 8 , ) 3 ,  
dR 
dt 

(2.11c) 

where K ~ ,  K~ and K~ are constants, and 8, is the unique static contact angle. Geometric 
considerations at the contact line yield two additional constraints on the drop 
surface h(r,  t). The first is that the surface of the drop must touch the solid surface 
there, 

Secondly, the contact angle is related to the slope of the drop by 

h[R(t), t ]  = 0. (2.12) 

El = -tan 8. (2.13) 

Finally, since the drop is assumed incompressible the volume V is a constant function 
of time. This is written as 

V = 2x rh(r, t)dr. (2.14) 

Given a set of initial conditions, then (2.1)-(2.8) with some form of (2.11), and 
(2.12)-(2.14) can be solved as functions in time. In general, however, this is very 
difficult as we are dealing with a moving-boundary problem and the Navier-Stokes 
equations. This problem is greatly simplified by using the lubrication approximation, 
which assumes that the ratio of the height to the radius of the droplet is small. 

ar r-R(t)  

r) 

3-2 
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To analyse the above system, we introduce dimensionless coordinates consistent 
with the lubrication assumption. We shall assume that the drop height is small 
compared to its radius, and that the contact angle is correspondingly small. This 
implies that if 0, is the characteristic contact angle then, 

0<0,e1. (2.15) 

Suppose we let R,  be a length characteristic of the drop radius, such as the initial 
drop radius or the equilibrium radius in those cascs where 0, is non-zero. Then we 
can introduce the dimensionless variables 

(2.16a) 

(2.16b) 

Also for each of the model! (1.2) of the slip coefficients A(h)  we define the 
dimensionless slip parameter A,, i = 1 ,2 ,3 ,  as 

A, = Ao(Rc @ o ) ,  A, = i l ( R c  0,)*, A, = i 2 ( R C  0,)3. ( 2 . 1 6 ~ )  

In the above scalings, we have kept velocities and lengths in thc vertical direction 
much smaller than those in the radial, in keeping with the lubrication limit. We note 
that the constant i is used to define the dimensionless velocities in ( 2 . 1 6 ~ ) .  This 
follows from the simple linear model ( 2 . 1 1 ~ )  where we see that dfld0 = I?. The 
definition of k is modified for the quadratic (2.11 b )  and cubic (2.11 c) casc. For the 
constant-contact-angle case of 0 = 0, we shall define the unit of velocity i0, in 
terms of the characteristic length R ,  and the characteristic time R,p/crOi. With 
these scalings, we also introduce the non-dimensional groupings of capillary number 

c a  = pi / (&; ) ,  (2.17) 

Bond number B = pgRE/u, (2.18) 

where all of these parameters are taken to be order 1. 
Using (2.16)-(2.19) in the system (2.1)-(2.8), and (2.11)-(2.14) we obtain 

dimensionless equations for the fluid motion. This completed, we then drop the caret 
over the non-dimensional variables. Following the analysis of Greenspan (1978), we 
keep the leading-order terms in 0, and integrate the equations to get a partial 
differential equation for the drop surface h(r,  t )  coupled with one for the drop radius 
R(t) .  The resultant equation for h(r,  t )  is 

I t = lRR,pU/(c0i), r = tR,, z = iR, O,, 

h = LRc O,, 
u = GI?@,, w = &Lo;, 0 = go,, 

V = VZnR3, O,, 
p = $ p i / ( R C  0,) +p,, R = RRc, 

f = fro,. 
In addition, for each of thc slip-vclocity relationships in (2.11) we define 2 as 

K1 = t?, K 2  = I?/@,, K3 = k / @ i .  

and Reynolds number Re = pR, i / p ,  (2.19) 

where 

and w = rl+h3 + ~ ( h )  121. 
The general velocity-angle relation (2.1 1)  using (2.13) becomes 

(2.20) 

(2.21) 

(2.22) 

(2.23) 
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For boundary conditions, first consider the origin r = 0. Symmetry and smoothness 
at the centre of the droplet imply that 

and 

(2.24) 

(2.25) 

At the contact line, the geometric condition (2.12) carries over directly. As for the 
volumc constraint (2.14), its non-dimensional form is 

I' = 1: rh(r, t )  dr. (2.26) 

Equations (2.12), (2.20)-(2.26) determine the motion of the droplet in the lubrication 
limit. 

We note that (2.20) has four spatial derivatives so four boundary conditions are 
expected for a well-posed problem but only three (2.12), (2.24) and (2.25) are given. 
(The condition (2.23) determines the moving boundary.) For our problem three 
conditions are sufficient. One might expect that the volume constraint (2.26) gives an 
additional (global) condition, but this is not true. To demonstrate this, take a time 
derivative of (2.26), and use (2.12) to show that 

Then using (2.20) to substitute for ahlat, we can integrate once to get 

W$l:_f = 0. 

(2.27) 

(2.28) 

The product w(aq/ar) is zero at r = 0, leaving only the end r = R to be considered. 
For A(h) = A, and A(h) = A ,  h-l, W is zero at the contact line, and we find that (2.20) 
is volume preserving. Therefore since W ,  the coefficient of the highest-order 
derivative, is zero a t  the contact line, (2.20) is singular there. So although we do not 
have an explicit proof, we expect, as with other differential equations where the 
coefficient of the highest derivative is zero a t  a boundary, to  need one less boundary 
condition to  determine a bounded solution of our problem. In other words we shall 
assume that (2.12) and (2.22)-(2.25) give a well-posed initial-value problem for h(r, t )  
and R(t) .  Because of (2.27) and (2.28) the volume constraint (2.26) can be used as 
a check on the accuracy of numerical method (see Haley 1990). For the A(h) = A, 
case, W is not zero a t  r = R and we need to  force aqlar to be zero there. This is the 
required fourth boundary condition for the non-singular equation. 

Before continuing we should note that the system (2.12) and (2.20)-(2.25) admits 
a steady-state solution, h,, of the form (note f(0,) = 0) 
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Here we have that the steady profile is defined for 0 < r < R, and I,(x) and I,(x) are 
the modified Bessel functions of order zero and one, respectively. By picking the 
parameters O,, R, and B we have uniquely determined the volume of h,. We note that 
this solution will work for all of the choices of the slip velocity versus contact angle 
relation as long as 0, is a static contact angle. 

3. Small-time analysis 
We wish to consider the initial-value problem for the motion ofa  droplet. As initial 

data we shall assume that the shape is of the form of the steady-state shape (2.29) 
but the initial contact angle, O,, will differ from the static contact angle 8,. This 
implies that the motion of the droplet is initially driven only by the local changes 
near the contact line, as the only equation not satisfied will be (2.23). Therefore the 
initial motion of the fluid in the neighbourhood of the contact line must be 
completely understood if we expect to obtain accurate numerical computations of 
the droplet motion. 

Here we shall study this initial-value problem by using the method of matched 
asymptotic expansions (see, e.g. Van Dyke 1975). We shall consider four cases: 

h 
h 

h 
h 

(i) A(h) =' and f(0) = 0-O,, (3.1) 

(3.2) (ii) h(h) = 2 and 0 = Q,, 

(iii) h(h) = A, and f(0) = O-O, ,  

(iv) h(h) = A ,  and O = 0,, 
(3.3) 

(3.4) 

with A, and A, given constants. Cases (i) and (ii) have a singular slip coefficient at  
the contact line, while the slip coefficient in cases (iii) and (iv) is a constant. Cases (i) 
and (iii) assume a linear relationship between the slip velocity, given by dR/dt in 
(2.23), and the contact angle. On the other hand cases (ii) and (iv) assume that the 
contact angle is fixed for all positive time. This implies that the boundary condition 
(2.23) no longer applies for cases (ii) and (iv) and is replaced by the condition 
0 = 0,. These four cases were chosen for our analysis because they have been used 
by several authors in studying contact-line motion. Here we would like to explicitly 
show how the four slip conditions influence the initial contact-line motion. Other slip 
conditions can be studied by a similar analysis. Hocking (1981) has already 
investigated the initial-value problem associated with case (iv). Parts of our analysis 
will parallel his. 

With the system (2.20)-(2.25) and (2.12), choose the volume and initial conditions 
as 

h(r, 0) = ho(r), (3.5) 

R(0)  = 1, (3.6) 

(3.7) 

where 
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and 9, is the initial contact angle. Notice that common to both these choices of h,(r) 
are the conditions h,( 1) = 0, and (ah,/&) I T - ,  = - 0,. Also we shall assume that the 
initial contact angle is close to the static contact angle (we will be specific about this 
shortly). 

In order to study the initial motion of the contact line we need only consider the 
linearized problems about the initial conditions. If we define the deviations of height, 
radius and contact angle from the steady state as 

I h(r, t )  = h,(r) + h*(r,  t ) ,  
R(t)  = l + R * ( t ) ,  

Q,-Q, = II., 
we find that the resulting linearized problem for case (i) is 

with 

and 

At r = 1 we have 
dR* 
dt 

and 

while at r = 0 we get the boundary conditions 

h*( 1, t )  = Q,R*, 

-- - 0. 
ah* a3h* -- - 
ar ar3 

The volume integral (2.26) reduces to 

[ r h * d r  = 0 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

and as initial conditions we have 

h*(r,  0) = R*(O) = 0. (3.17) 

The system (3.10)-(3.17) will be solved by the method of matched asymptotics. The 
inner region will be in the neighbourhood of the contact line, while the outer region 
will be away from it. 

Since (3.10)-(3.17) can be expected to hold only for short times, introduce the time 
stretching 

t = m  (3.18) 

with E a small parameter, 0 < E < 1. We now look for the outer solution, away from 
the contact line, in terms of a regular perturbation expansion in E .  We see 
immediately that at leading order in e, the perturbation to the height h* is zero in 
the outer region. In other words, the initial motion of the drop is confined to the inner 
region. 

Now consider the inner region. Here the drop height is small and distances will be 
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measured local to the position of the contact line r = R(t) .  Therefore, introduce the 
scalings near the contact line of 

and 

1 - r  s = -  
1 ,  

h*(r, 7 )  = eH(s,  7 ) ,  

R*(7) = 4 7 )  

(3.19) 

(3.20) 

(3.21) 

into (3.10)-(3.17) and group in powers of E .  Keeping the terms of leading order in E ,  

we find -=--(,,,osg), i3H a 

dR 
- = -Ca$, d7 

a7 as 

H ( 0 , 7 )  = 0,R(7) ,  

1: H ( s ,  7 )  ds = 0,  

H(s,O) = 0, 
R(0) = 0, 

and the matching condition 
lim H(s ,  7 )  = 0. 
s+cc 

(3.22) 

(3.23) 

(3.24) 

(3.25) 

(3.26) 

(3.27) 

(3.28) 

Equation (3.25) and the matching condition (3.28) arise because the outer solution 
is zero at this order. We note that this system holds for the Bond number B both zero 
and non-zero. This occurs because h,(r) looks linear to this order, and both cases look 
like the same line. 

From (3.23) and (3.27) we see that the equation for R(7) decouples from those for 
H ( s , 7 ) .  We find that the solution for E(7) is given by 

(3.29) R(r)  = - Ca $7. 

Using this in (3.24) the boundary condition for H becomes 

H(O, 7 )  = - Ca $ 0 , 7 .  (3.30) 

We can now look for a similarity solution to the system (3.22), (3.25), (3.26), (3.28), 
and (3.30). Define the similarity variables 

P 
X =  

( A ,  0,7)5’ 
(3.31) 

H ( s , 7 )  = ~ C a 0 0 7 F l ( x ) ,  (3.32) 

and substitute them into the system. We get in the inner region the similarity 
problem 

d 
dx 
- (xFl”(x)) - i X F i ( X )  +F1(X) = 0, (3.33) 

with F1(O) = - 1,  (3.34) 

limFl(x) = 0,  
X+CO 

(3.35) 
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and /owFl(x) dx = 0. (3.36) 

Equation (3.33) is a fourth-order ordinary differential equation for Fl(x). It must 
satisfy the two boundary conditions (3.34) and (3.35) plus the integral constraint 
(3.36). Again we appear to  be missing one condition for this fourth-order equation 
but, as noted earlier, the equation is singular at x = 0 so we need only the above 
conditions to determine bounded solutions. 

We can solve (3.33) by noting that it can be converted to a first-order equation 
by using a Laplace transform. This then, at least formally, is solved fairly 
straightforwardly. Unfortunately, the resulting solution is very difficult to use. 
Therefore we shall solve the system numerically. Two additional conditions a t  
x = 0 can be determined by looking at the exact solution near x = 0 to find 

FY(0) = 1, (3.37) 

and (3.38) 

This system is then solved numerically by using a variable-step-size finite-difference 
method (IMSL routine DBVPFD). 

The other three cases can be solved in a similar manner. The difference will be the 
local scalings in the inner region and the similarity variables. Each case will have a 
slightly different differential equation for the surface. For case (ii) we set 

l - r  
X =  

( A ,  0,€7):’ 

h*(r, 7) = @(A, 0 , e T ) ~ F 2 ( z ) .  
The equation for F, is 

d X 
-[xF~]--FL+~$ dx 3 2 -  - 0, 

Fi(0)  = 1,  

limF2(x) = 0, 

/;F,(x) dx = 0. 

X + Q I  

For case (iii) we have A(h) = A,, and the linear velocity-angle relation 

l - r  
X =  

O,(AO€7)f’ 

h*(r,  7) = CU 0, @ETF~(x) 
The equation for F3 is now 

d 
-[X~F;]-~X&+F~ dx = 0, 

F3(0) = - 1,  

limF3(x) = 0, 

1: F3(x) dx = 0. 

2-03 

(3.39) 

(3.40) 

(3.41) 

(3.42) 

(3.43) 

(3.44) 

(3.45) 

(3.46) 

(3.47) 

(3.48) 

(3.49) 

(3.50) 
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FIGURE 2(a ,b) .  For caption see facing page. 
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FIQURE 2. Small-time local asymptotic drop profiles, at times t = 0, 0.01 and 0.02. (a) case ( i ) ;  
( b )  case ( i i ) ;  (c) case (iii) ; ( d )  case (iv). 
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Finally for case (iv) we set A(h) = A,, and fix the slip velocity-contact angle relation, 
so 

Here we find that 

t - r  
x =  

@,(A, €7);' 

h*(r, 7 )  = $@,(A, m);F4(x). 

d 
dx 
- [x'F~ - !jxF; + = 0, 

(3.51) 

(3.52) 

(3.53) 

= 1, (3.54) 

lim F4(xJ = 0. (3.55) 
X * a )  

In  this last system, which was studied by Hocking (1981), the equation with its two 
boundary conditions imply conservation of volume. 

We observe a rough qualitative agreement when we compare the composite 
solutions for h(r, t )  in figure 2. An initial lip of fluid flows out from the contact line, 
taking fluid from immediately above, and leaving the bulk of the drop undisturbed. 
As the motion progresses, more of the fluid above is drawn to the lip, until the entire 
drop feels the motion of the contact line. The singular slip length, A, h-l, cases, figure 
2 (a ,  b ) ,  involves more of the drop in the motion, while the non-singular cases, figure 
2(c, d ) ,  keep the motion localized near the contact line. Although the profiles in figure 
2(a ,  b) ,  for the singular slip models, appear to  show an increase in volume, this is an 
artifice of our using the same axes for all four cases. Were more of the drops in figure 
2 (a,  b )  shown, we would see profiles similar to figure 2 (c, d) .  For the linear cases (i) 
and (iii) we find that R(7) and H decouple and R(7) is a linear function of 7 depending 
only on the parameters Ca, Q,, and 0,. Consequently, the drop radius spreads in 
exactly the same manner initially regardless of the choice of A(h). For the constant- 
angle cases (ii) and (iv) we also find that R(T)  and H decouple but leave the drop 
radius a function of the similarity solution at the contact line. This makes the rate 
of spreading indirectly dependent upon the choice of A(h). I n  this case the singular 
choice spreads significantly faster. 

Although an analytical solution for F,, Fz, F3 and F4 is not obvious, we can 
determine the behaviour of Fi for large values of their similarity variable x using the 
WKB method. The result is in the far field of the inner region: 

for case (i) 

Fl(x) - x-gexp[ - ~ ] r A c o s ( ~ x ) + B s i n ( $ x ) } ;  2(3); (3.56) 

for case (ii) 

F,(z) - x-i exp [-'I cos (; x) +B sin (: x)} ; (3.57) 
2(3); 

for case (iii) 

F3(x) - x+exp[ - $ x i ] k  cosGxi)+Bsin($.i)}; (3.58) 

while for case (iv) 

(3.59) 

These results are summarized in table 1. I n  particular we note there the singular 
behaviour of h and its derivatives. The singular-slip-coefficient case has bounded 
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derivatives at the contact line but the constant-slip-coefficient cases will both have 
a logarithmic singularity at the contact line. Also we note that the fixed-contact- 
angle case will have a jump in its first derivative at time zero because the initial 
contact angle is not equal to the advancing contact angle. These results indicate that 
greater care will be needed in solving the initial-value problem for the fixed-angle 
cases, and that case (i) should have the fewest problems of the four. 

4. Numerical method and results 
Here we shall numerically solve the system of equations (2.12), (2.20)-(2.25) using 

a pseudo-spectral method (see e.g. Gottlieb & Orszag 1977 or Canuto et al. 1988). We 
begin by mapping our moving-boundary problem onto a fixed domain with the 
change of variables 

t = 7, (4.1) 

T = R(7) (x+ 1)/2, 

h(r,  t )  = R(7) H ( x ,  7 ) .  

The computational domain is now given by r > 0 and - 1 < x < 1.  This particular 
spatial domain is chosen for the Chebychev pseudo-spectral approximation of the 
spatial derivatives. To update in time we use a backward Euler method. Although 
only first order, it is very robust, being less sensitive to nonlinear instabilities than 
higher-order methods. This nonlinear system is solved by Newton’s method. Details 
of this method as well as convergence checks can be found in Haley (1990). 

We now present numerical solutions of the lubrication model of droplet motion. 
We shall begin by considering a linear contact angle-slip velocity relation (2.11 a )  
and solving the system of equations with A(H)  = A, /H.  Unless otherwise stated, we 
shall assume that the reference-case conditions are B = 0, Ca = 0.1, A, = 0.01, 
8, = 0, 0, = 1,  R(0)  = 1 and we fix the volume V = i. The initial data are given by 
h,(r, @,,R(O)) with B = 0, i.e. (2.29) with B = 0. In figure 3 we present several drop 
profiles for these conditions. 

We note that if 8, were greater than zero but less than 8, we would see the droplet 
asymptotically approach its equilibrium shape as time increases. Hence the case of 
0, = 0 is a reasonable problem to investigate since its behaviour is similar to that of 
all droplets which will try to coat a surface after it is initially deposited. If 0, were 
greater than 8, the drop would contract and as time increased we would see the 
equilibrium shape asymptotically approached. As was observed by Greenspan & 
McCay (1981) it is possible in this case for the middle to decrease in height and then 
increase. 

The first question we ask is how will the Bond number affect the spreading rate. 
In figure 4 we plot R(t) vs. t for B = 0, 0.5, 1.0, 5.0 and 10.0. We find that increasing 
Bond number increases the spreading rate. Since B is proportional to g, the 
acceleration due to gravity, this is expected. We note that at t = 50 the difference 
between B = 0 and B = 1 is about 2% while the difference between B = 1 and 
B = 10 is about 14 YO. Here we should keep in mind that for B =k 0 the initial data are 
not in equilibrium all along the surface of the drop and not just at  the contact line. 

Suppose we consider the effect of varying the drop volume on the spreading rate. 
Since our initial conditions are given by h,(r, O,,R(O)) with B = 0, we find that the 
volume V ,  initial contact angle 8, and initial radius R(0)  are related by 

v = ;0 ,~3 (0 ) .  (4.4) 
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FIQURE 4. Drop radius R(t )  ws. t for B = 0, 0.5, 1.0, 5.0 and 10.0. 
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We first vary the volume by varying 8,. This is done in figure 5 where we consider 
the three cases of 8, = 0.5, 1.0 and 2.0. We find that the larger 8, is, the faster the 
droplet spreads. Since a larger 8, and fixed R(0) implies a larger volume of the drop, 
we see that the spreading rate increases with volume. The latter observation is not 
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8, = 2.0 

I .8 

1.0 ; I I I I I 
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1 

FIGURE 5. R(t)  vs. t for 0, = 0.5, 1.0 and 2.0 and for fixed initial radius R(0)  = 1. 

1 

FIGURE 6. R(t )  vs. t for V = &, 8 and f for fixed initial contact angle 0, = 1. 

in general true. I n  figure 6 we keep 0, = 1 fixed but considered the three cases of 
V = $, t and 2. From (4.4) we see that this implies that the initial radius must vary. 
So we plot the normalized radius R(t)/R(O) versus t in figure 6. Here we see that the 
rate of increase of radius increases with decreasing volume, in contrast to the 
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FIQURE 7. 

1.0 y I I I I I I 
0 0. I 0.2 0.3 0.4 0.5 

cu r 
R(t) vs. Cut for Cu = 1.0, 0.1 and 0.01 plus the small-Cu asymptotic limit (4.6). 

previous case. These results imply that the spreading rate in this problem depends 
on two of the three parameters, R(O), V and 0,. In other words, the initial values of 
all the parameters are needed to correctly interpret the results. 

For small capillary number an asymptotic solution of (2.12), (2.20)-(2.25) can be 
found (see Greenspan 1978; Greenspan & McCay 1981). The result of the analysis for 
B = 0 is a first-order ordinary differential equation for the leading-order behaviour 
of R( t )  : 

81' 
=-Go,+, ,  

dR 
d T  R 
- (4.5) 

where T = t Cu. For the special case of 0, = 0 we can explicitly integrate (4.5) to  find 

~ ( t )  = ~321' ~a ~ + R ~ ( o ) - $ .  (4.6) 

I n  figure 7 we plot the drop radius versus the scaled time T = Cut for Cu = 0.01, 0.1 
and 1.0. Also, we plot the asymptotic result (4.6). We see that the Ca = 0.01 case is 
very close to the asymptotic result even up to t = 50 with the difference less than 
0.5%. For the Ca = 0.1 case, the asymptotic and numerical results differ by about 
4 YO a t  t = 5.0 while a t  t = 0.5 the Ca = 1 numerical case has already differed from the 
asymptotic by 12 YO. So for Ca < 0.1 we can expect reasonable predictions from (4.5). 

The two major modelling assumptions in this study are the form of the slip 
parameter h(H) and the slip velocity versus contact angle relationship. We now wish 
to  study how these relationships affect the spreading rates. As noted before, Dussan 
V. (1976) has considered the limits of small capillary number and small 0, - 0, of a 
steady flow. Her conclusion was that the characteristic of the slip boundary 
condition that most affects the overall flow field is the magnitude of the slip length. 
For the initial-value problem studied here we shall not restrict ourselves to the 
assumptions of small capillary number and small 0, - 0, difference. 
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FIG~JHE 8. R(t )  vs. t for A. = 0.1 and 1.0. Also for A, = and and for A, = 

In  figure 8 we plot R(t) 0s. t for A, = lop2, lop3 and lop4. The other parameters are 
set to those of the basic-state case. We note that the spreading rate increases with 
A,. This result is consistent with the fact that the size of A, can be viewed as a 
measure of the deviation of our slip model from the no-slip boundary condition, i.e. 
thc larger A, is then the more slip we find. We also show in figure 8 numerical results 
for a constant slip parameter, i.e. A ( H )  = A,, case (iii) of $3, and set A, = 0.1 and 1.0, 
as well as results for a quadratically singular slip parameter, A(H)  = A , I P  with 
A, = The qualitative behaviour of the spreading is similar in all three cases. In  
particular, the larger the slip coefficient, the larger the spreading rate. But there are 
some specific differences. For example in order to  get approximately the same initial 
spreading rate the coefficient A, in the non-singular case must be a lot larger than the 
A, in the singular case. This is consistent with the observation that local to the 
contact line the singular slip coefficient will always be larger than any constant slip 
coefficient. Comparing the quadratically singular case to the singular case with A, = 
0.01 we again see that the case with the more singular slip function spreads faster. 
Further, as the drop spreads and thins, this effect is multiplied. This implies that we 
can expect that even if the initial spreading rate for the more singular case is slower 
than the less singular case, it will eventually overtake the less singular slip coefficient 
case (note that 0, = 0 here). Although not shown in the graphs, we have also found 
that the less singular cases are gradually overtaken by the more singular cases for 
initial data where the more singular case initially spread slower than the less singular. 
In other words, after a sufficiently long time, a more singular case will always pass 
a less singular one. 

The second major modelling assumption made was the contact angle-slip velocity 
relationship (2.1 1 ) .  We have assumed a linear relationship in all the results presented 
so far. In  figure 9 we plot the radius R( t )  versus time t for the linear (2.11a), 
quadratic (2.11 b )  and cubic ( 2 . 1 1 ~ )  contact angle us. slip velocity relationships. In  
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figure 9 ( a )  we set 0, = 1 and all of the other variables equal to the reference case. We 
find that the linear relation implies the fastest spreading, the quadratic the next and 
the cubic is the slowest. This is consistent with the fact that the droplet is spreading, 
so immediately the contact angle will drop below its initial angle 0, = 1. Therefore 
the right-hand side of (2.11 c) will be smaller than the right-hand side of (2.11 b )  which 
will be smaller than the right-hand side of (2.11 a ) .  In  figure 9(b) we set 0, = 2.0 (note 
the change in scales). Initially the cubic now spreads the fastest but eventually 0 will 
be less than one and the quadratic and linear cases will overtake it. 

As with the linear case, a small-capillary-number limit can be considered for 
(2.11 b)  and (2.11~) .  The result is an equation similar to  (4.5). For the quadratic case 
we find, a t  leading order in Ca with B = 0, 

and for the cubic, 

dR = (-0s+g)2> 
E = ( - O s + g )  dR > 

3 

(4.7) 

where T = Cut with the respective Ca for each case. For 0, = 0 we can integrate to 
find that, at leading order in Ca, 

R(t )  = [7(8V)2Cat+R7(0)]f (4.9) 
for the quadratic relation (2.1 1 b ) ,  while 

R(t) = [10(8V)3Cat+R'0(0)]k (4.10) 

for the cubic relation (2.11 c ) .  Here we see that for large times R grows like ti for the 
linear relationship (2.11 a) ,  like tf for the quadratic relationship (2.11 b )  and like tA for 
the cubic relationship (2.11 c). We note that these spreading rates were obtained by 
de Gennes (1985) by a different argument. 

Recently Chen (1988) did a series of experiments on the spreading of a liquid drop 
with a very small advancing static contact angle (less than lo). For his experiments 
(silicone oil drop on a soda-lime glass plate) he found that the radius grew as th. He 
compared these predictions with a solution given by Starov (1983). Starov found this 
solution by looking for a similarity solution of (2.20) with h(h) = 0. Starov's 
calculation assumes that the surface is wetted and he defines the contact line as the 
point of inflection in the profile. We have recovered this tA spreading by just 
assuming (2.11 c) and allowing for a contact angle. We note that (2 .11~)  predicts that 
the contact angle decays as t-i. This is also predicted by Starov (1983). We also note 
that our small-Ca results (4.5), (4.7) and (4.8) should also be approximately valid at 
large time and not just small values of Ca. This follows since, as the drop spreads, the 
profile should be approximately the static shape, a quadratic (2.29) for B = 0. This 
is exactly the result of the small-Cu analysis. Then using either (2.11a), (2.11b) or 
(2 .11~)  the equation for the radius follows, either (4.5), (4.7) or (4.8). We should also 
note that Hocking (1983) using the constant-slip and constant-contact-angle 
conditions predicts approximately the tk spreading rate by including lower-order 
terms in the small-capillary-number expansion. 

In  figure 10 we compare the small-time asymptotic result for the reference case (i.e. 
case (i)  of $3) to the numerical solution of the reference case for Cu = 0.001, 0.01, 0.1 
and 1.0. We plot the radius R(t) versus T = Cut. For fixed T we note that the 
numerical results approach the asymptotic as the capillary number decreases. In 
terms of the time t ,  this implies that the small-capillary-number runs will have better 
agreement with the asymptotic results for larger values of t .  
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FIGURE 10. R(t )  vs. Cut for Cu = 0.001, 0.01, 0.1, 1.0 and the small-time asymptotic result of 
case (i). 

Slip condition h(h) 

Linear hrrrlr-R(L) = 2318 hrrrlr-R(L) = 3' l 5  hrrrlr-R(f) = -''lo 
(singular) 

Time to spread : t = 10.3 

Time to spread: t = 14.3 

Time to spread : t = 20.0 

Time to spread : t = 4.5 

Time to spread: t = 7.2 

Time to spread : t = 1 1  .O 

Time to spread : t = 3.9 

Time to spread: t = 5.9 

Time to spread : t = 9.1 

Quadratic hrrr)r-R(f) = 77 1 (singular) 'rrrlr-R(t) = 1'60 hrrrlr-R(L) = -0'055 

Cubic hrrrlr-R(Ll = 390 (singular) hrrrlr-Ru) = 0.87 hrrrlr-R(f) = -0.029 

TABLE 2. Contrasting third derivatives and spreading times for the various numerical schemes. The 
various cases are allowed to spread until the drop radius reaches a size of 1.25. The values of the 
third derivative of h a t  the contact line r = R(t ) ,  and the times necessary to reach that size are then 
tabulated 

Finally, we summarize the numerical results of this section in table 2. There we 
give for each of the three slip coefficients (1.2) and each of the three slip 
velocity-contact angle relationships (2.1 1 )  the value of the third derivative at  the 
contact line when the radius has spread to R = 1.25, and the time taken to spread 
that far. The third derivative is calculated by evaluating the pseudo-spectral 
approximation a t  the contact line. In our numerical method the differential equation 
is never imposed at the contact line so possible singularities at  the contact line are 
avoided in the calculation. The singular-slip-coefficient cases both have finite third 
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derivatives at the contact line. We see from table 2 that the magnitude of this 
derivative is at  least an order of magnitude larger in the A, case than in the A, case. 
As noted in the local analysis of $3 the third derivative will be singular in the 
constant-slip-coefficient case. The values for the derivatives reported in that column 
should be taken as an indicator of the strength of the singularity. That the code does 
try to capture this singularity can be demonstrated by examining the third 
derivative with increasing number of modes, N .  For example, in the linear case with 
N = 16,32 and 64, the third derivative at  the contact line has the values of 439,2318 
and 10423 respectively. Even with this singularity, the height h, its first derivative 
and the drop radius R show a convergence along all of the drop. The next 
comparisons in table 2 are the spreading rates. We first note that the rate of 
spreading increases as the singularity in the slip coefficient increases. Also, for the 
cases considered here, we find that the spreading rate increases as we move from the 
cubic to the quadratic to the linear slip velocity-contact angle relationships. As 
shown in figure 9 this is not in general true but depends on the initial data, but as 
noted earlier the trend is true for large times. We have set N = 32 for the results 
presented in table 2. 

5. Conclusions 
The motion of a viscous droplet has been determined using the lubrication model 

(2.12), (2.20)-(2.26). We have considered several slip coefficients and slip velocity- 
contact angle relationships. These models were solved asymptotically for short time 
and numerically for finite time using a pseudo-spectral method. We find that 
the spreading rates strongly depend on the form of these relationships but the 
qualitative features of the droplet motion are similar in all cases. 

We have chosen to consider slip coefficients that were either a constant or inversely 
proportional to the droplet thickness, or its square. The slip velocity-contact angle 
relationships chosen were either for constant angle or for the slip velocity 
proportional to the difference of the contact angle from its static value, or 
proportional to the square or cube of these differences. These relationships were 
chosen here but the proper form of the relationship should be determined by an 
analysis in the neighbourhood of the contact line. There has been some work in this 
direction (Hocking 1977 ; Jansons 1986), but many questions still remain. Our results 
and those of Dussan V. (1976) for small capillary number imply that although the 
qualitative features of the motion are similar in all cases, in order to compare with 
experimental data specific features of the model are required. On the other hand, 
using the results presented here and comparing with experimental data it could now 
be possible to choose a model. If data on the spreading rates of a droplet and slip 
velocity-contact angle relationship were found, one could determine which of the 
models (1.2) and (2.11) best fit the data. Once this is done specific predictions, such 
as the dissipation associated with the contact-line motion, could be made. Finally, we 
note that other models of contact-line motion different from those presented here 
could be solved by our method. 

The authors wish to thank Alvin Bayliss and Steve Davis for several helpful 
discussions. This work was supported in part by DOE Grant No. DE-FGO2- 
88ER13927. Also, acknowledgement is made to the Donors of the Petroleum 
Research Fund administered by the American Chemical Society for partial support 
of this research. 
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